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TECHNICAL ABSTRACT

Probabilistic estimates of earthquake hazard use various models for the temporal
distribution of earthquakes, including the "time-predictable" recurrence model formulated by
Shimazaki and Nakata [1980] (which incorporates the concept of elastic rebound described as
early as 1910 by H. F. Reid). This model states that an earthquake occurs when a fault recovers
the stress relieved in the most recent earthquake. Unlike time-independent models (for example,
Poisson probability), the time-predictable model is thought to encompass more of the physics
behind the earthquake cycle, in that earthquake probability increases with time. The time
predictable model is therefore often preferred when adequate data are available, and it is
incorporated in hazard predictions for many earthquake-prone regions, including northern
California [Working Group on California Earthquake Probabilities (WG99), 1999], southern
California [Working Group on California Earthquake Probabilities (WG95), 1995; Cramer et
al., 2000], New Zealand [Stirling, 2000], and Japan [Annaka and Yashiro, 1998].  Here we show
that the model fails in what should be an ideal locale for its application – Parkfield, California.
Through constrained inversion of geodetic measurements and application of the bootstrap
statistical technique, we estimate rigorous bounds on the predicted recurrence time of the
magnitude ~6 1966 Parkfield earthquake.  Our results indicate that, according to the time-
predictable model, another such earthquake should have occurred by 1987.  The model's poor
performance in a relatively simple tectonic setting does not bode well for its successful
application to the many areas of the world characterized by complex fault interactions.
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NONTECHNICAL ABSTRACT

The time-predictable earthquake recurrence model, which is often used in earthquake
probability forecasts, states that an earthquake will occur when a fault reaccumulates the strain
released in the most recent earthquake.  Using measurements of surface displacement near the
San Andreas fault in central California we estimated rigorous bounds on the recurrence time
predicted by this model for a M~6 earthquake.  The model predicts that this quake should have
happened by 1987, but to date it has not occurred.  This implies that the time-predictable model
is too simple to account for the many processes that influence earthquake occurrence.
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INTRODUCTION

In our fiscal year 2002 proposal we presented two research projects which we have
pursued.  The first was a test of the time-predictable earthquake recurrence model and the second
was inversion of geodetic data for time-varying deformation at Parkfield, CA.  The first of these
two projects was completed during fiscal year 2002, and the results are presented here.  We
applied for and were awarded a continuation grant for fiscal year 2003 for the study of transient
deformation.  This project will be briefly summarized here, however in-depth discussion of this
study will be deferred to the FY2003 annual report.

PROJECT 1: TESTING THE TIME-PREDICTABLE RECURRENCE MODEL USING GEODETIC DATA

The time-predictable recurrence model

A key ingredient of seismic hazard assessment is an accurate model for the temporal
distribution of earthquakes.  The time-predictable recurrence model [Shimazaki and Nakata,
1980] is based on the idea of elastic rebound [Reid, 1910] and states that, assuming a constant
loading rate and a fixed threshold stress for fault failure, the time required for an earthquake to
occur is that needed to recover the stress released in the most recent event.  This leads to the
expectation that earthquake probability increases with time since the last event.  Since this model
is thought to incorporate some of the physics behind the earthquake cycle it is often preferred
over purely statistical models for earthquake recurrence when sufficient data are available.
While the model does not account for many factors affecting earthquake occurrence, it is
incorporated in hazard predictions world-wide, including those for northern California [WG99,
1999], southern California [WG95, 1995], New Zealand [Stirling, 2000], and Japan [Annaka and
Yashiro, 1998].

The model was formally stated in terms of fault stress.  Stress, however, is difficult to
measure directly, so strain is often used as a proxy for stress.  This is, in fact, what Shimazaki
and Nakata [1980] did in practice.  For the time-predictable model, this is equivalent to
expressing the interevent time as the ratio of the coseismic moment release to the interseismic
moment deficit rate. Segall and Harris, [1987] discuss the representation of fault stress by
moment in terms of the accumulation and release of elastic strain energy.

The coseismic moment, Mo, is given by:

Mo A
sdAµ= ∫∫ (1)

where µ is the shear modulus, A is the area that slipped, and s is the (spatially variable) fault slip.
This fault slip can be estimated from geodetic data.  For the interseismic period, we consider a
fault that is continuously loaded by steady aseismic slip below the seismogenic zone.  If the
seismogenic zone were creeping everywhere at the long-term deep slip-rate, then no strain would
accumulate.  If the slip-rate of the seismogenic zone lags the deep slip-rate, however, strain will
build up.  The slip-deficit leads to a moment deficit, the rate of which can be used to estimate
interevent time, ti:
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M ( )d A
s s dAµ ∞= −∫∫& & & (2)

M / Mi o dt = & (3)

where Md
&  is the moment deficit rate, and s∞& - s&  is the (spatially variable) slip deficit rate (given

the deep slip-rate, s∞& , and the forward slip-rate on the seismogenic fault, s& ).  As with the
coseismic slip, the spatial distribution of interseismic slip deficit rate may be inferred by
inversion of geodetic data.

Rationale for testing the time-predictable model and methodological considerations

We used Parkfield, CA (fig. 1a) as the test locale for our study.  Based on Parkfield’s
history of moderate earthquakes, a prediction was made that a M~6 would occur in 1988 ± 4.3
years [Bakun and McEvilly, 1984], but to date the most recent event of this size was in 1966.
Harris and Segall [1987] and Murray et al. [2001] both inferred an area of low slip-rate on the
southeastern portion of the Parkfield fault segment (fig. 1b), suggesting that strain has been
accumulating here throughout the interseismic period since 1966 even though no earthquake has
occurred.  Although the famous Parkfield prediction was not based on the time-predictable
model, another study [Segall and Harris, 1987] used this model to estimate a range of expected
recurrence times for the anticipated earthquake.  The maximum interevent time (29 years)
predicted by Segall and Harris’s study has since passed.  This could reflect modeling
assumptions they made; alternatively it may be an indication that the time-predictable model’s
forecasting capability is unreliable.  Therefore, we set out to conduct a rigorous test of the time-
predictable model, avoiding the previously made assumptions.

Our approach is to use inversion of geodetic data to estimate an upper bound on the time
required to recover the strain released in the 1966 earthquake as given by (3).  According to the
time-predictable model, another earthquake will happen when this strain is reaccumulated.  If we
can show at high confidence that the time since 1966 has exceeded the predicted upper bound
interevent time, then the time-predictable model has failed at Parkfield.  The existing questions
surrounding earthquake recurrence at Parkfield make it an interesting place to test the model.
More importantly, this area, unlike most, possesses an extensive history of geodetic
measurements spanning both the 1966 earthquake and the interseismic period since then [King et
al., 1987; Segall and Harris, 1987; Murray et al., 2001].  Furthermore, the fault geometry at
Parkfield is simple, consisting of only the San Andreas, unlike the San Francisco Bay Area or
southern California which are characterized by several parallel active fault strands.

There were three complications to the estimation of bounds on interevent time which we
had to address.  First, inversion of geodetic data for slip or slip-rate distribution is nonunique.
Often the inverse problem is regularized by application of spatial smoothing, however in this
case the moment or moment deficit rate of the resulting distribution is contingent on the amount
of smoothing applied.  Moreover, geodetic data can not well resolve the depth of the transition
between the seismogenic and the deeper aseismically slipping crust or the long term slip-rate on
the aseismically slipping portion.  Finally, when calculating an upper bound on the interevent
time as in (3) it is necessary to properly account for the joint probability distribution of moment
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and moment deficit rates, rather than using the maximum moment estimate and minimum
moment deficit rate estimate to find an “upper bound”.  At the time of our proposal, we still
needed to develop a method that addressed these issues, particularly the last two.  We have done
so, as discussed in the following section.

Figure 1: a) The Parkfield area.  Vectors are GPS velocities (1991-1998) relative to North America.  The model fault
(black and red line) was based on the mapped fault trace and seismicity [e.g., Murray et al., 2001].  Star on San
Andreas is the 1966 epicenter, asterisk is the town of Parkfield.  The M 6.5 1983 Coalinga earthquake is also shown.
b) Interseismic slip-rate estimated from the GPS data in part (a) [Murray et al., 2001].  The gridded portion of the
fault represents the seismogenic part and corresponds to the red segment of the model fault in fig. 1a.  The transition
depth is at the base of the gridded area.  The contribution to GPS velocity from slip on the creeping section of the
San Andreas and from slip below the transition depth were incorporated with uniformly slipping dislocations (these
dislocations are larger than shown in fig 1b).  The locations of the 1992 M 4.3, 1993 M 4.6, and 1994 M 4.7
earthquakes are shown as circles with equivalent rupture area of a 3 MPa stress drop crack.  The star is the 1966
hypocenter.

Method and Results

The major steps in our analysis are as follows: 1) Estimate the 1966 coseismic moment
and the interseismic moment deficit rate using constrained inversion of geodetic data.  2) Use a
probability distribution of transition depth and deep slip-rate for the interseismic period to
account for uncertainties in these parameters.  3) Employ the bootstrap statistical procedure to
account for the joint probability distribution of moment and moment deficit rate in order to find a
distribution of predicted interevent times from which 95% confidence limits can be obtained.

The data consist of 1) trilateration measurements made by the California Department of
Water Resources, the California Division of Mines and Geology, and the USGS from 1959 to
1991, and 2) Global Positioning System (GPS) data collected by the USGS between 1991 and
1998.  Following King et al. [1987], we estimated interseismic rates of line-length change for all
trilateration lines and the coseismic offset for lines with pre-earthquake data.  The GPS
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measurements were processed and analyzed by Murray et al. [2001] to estimate velocities of
GPS sites.  The complete interseismic dataset contains 15 years of additional data beyond that
which Segall and Harris [1987] used in their original estimation of interevent time using the
time-predictable model.  Based on previous inversions, we found that the interseismic slip-rate
distributions estimated from the trilateration and GPS data differ slightly.  Therefore, in the
current analysis we treated the two data sets for the interseismic period separately, estimating a
moment deficit rate between 1966 and 1991 from trilateration data and from 1991 to 1998 using
GPS data.

Following Johnson et al. [1994] we employed constrained inversion to determine
moments and moment deficit rates consistent with the data without assumptions implicit in
regularized inversions.  Constrained inversion involves finding the slip distribution on the model
fault (fig. 1) that best fits the data, subject to the constraint that the seismic moment equals a
specified value.  Slip was constrained to be positive (right lateral), but we made no assumption of
smoothness (fig. 2a).  The upper bound for coseismic slip was 0.8 m, which exceeds the
maximum slip estimated in previous studies [Segall and Harris, 1987; Segall and Du, 1993].
We swept through a range of moments and found a best-fitting slip distribution for each one (fig.
2b).  The Mo with the lowest misfit (star in fig. 2b) is optimal in the sense that there are no slip
distributions resulting in different moments that fit the data better.  The same procedure was used
to estimate the moment deficit rate.  In this case the maximum allowable slip deficit rate was the
deep slip-rate (i.e., the fault was not allowed to slip left laterally).

The range of moments that fit the data acceptably well is more important than the best
fitting Mo.  To identify this range we used the bootstrap [Efron and Tibshirani, 1993].  We
resampled the data and repeated the constrained inversions for best-fitting Mo 4,000 times
yielding a distribution of Mo estimates, and did the same for the interseismic period to infer the
distribution of dM& .  We then used these distributions in the calculation for interevent time.  The
distributions can also be used to obtain confidence intervals on Mo and dM& .  We found this
method for inferring the range of Mo that fit the data to be successful in an empirical test using
data predicted from a hypothetical slip distribution (fig. 2c).

Although the resulting estimates of Mo and dM&  are conditional on an assumed transition
depth, and in the case of dM& , deep slip-rate, it is possible to account for uncertainty in these
parameters.  Geodetic data provide some constraints on transition depth and deep slip-rate, but
they are not uniquely resolved.  Murray et al. [2001] estimated interseismic slip-rates for a range
of transition depth and deep slip-rate pairs with optimal smoothing determined by cross
validation [Wahba, 1990]. The CVSS, a measure of misfit, is a nearly quadratic function of
transition depth and deep slip-rate, and these quantities are highly correlated.  The minimum
CVSS is at 14 km and 33 mm/yr, in keeping with independent geologic and seismic observations
[Eaton et al., 1970; Sieh and Jahns, 1984].  For linear least squares the residual sum of squares
(RSS) is quadratic, and the corresponding probability density function (pdf) is proportional to
e-RSS.  We used the observed distribution of CVSS to generate an approximate pdf proportional
to e-CVSS (fig. 2d).  Each time the data were resampled in the bootstrap, a new transition depth /
deep slip-rate pair was chosen from this empirical distribution.
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Figure 2: Constrained inversion
and bootstrap procedure.  a) Slip
distributions from constrained
inversion corresponding to 95%
confidence limits on coseismic
Mo for transition depth of 14 km.
b) Misfit as a function of
coseismic Mo.  c) Test of the
constrained inversion / bootstrap
method for bounding Mo using
synthetic data.  We repeated the
constrained inversion and
bootstrap process 700 times with
different random errors added to
the synthetic data.  The fraction
of times the “true” Mo fell outside
the inferred range is shown as a
function of confidence interval
(fig. 3c, red line).  For
comparison, the blue line shows
the predicted behavior; e.g., at the
95% confidence level the “true”
Mo should fall outside the range
5% of the time.  d) approximate
probability distribution for
transition depth and deep slip-rate
based on e-CVSS.

To determine bounds on the interevent time that properly account for the joint probability
distribution of the moment and moment deficit rates, we first calculated a distribution of
interevent times by forming the ratio of Mo to dM&  using values drawn from the distributions for
each of these quantities (fig. 3).  We took care that for each pair of  Mo and dM&  both were found
using the same transition depth.  Noting that we had 25 years of trilateration measurements
without a Parkfield earthquake, we estimate the interevent time as:
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t∆ =
&

(4)

if 
1966

t
o dM (M   25yrs) 0− × ≤& , and

1966

t
o d

G
d

M (M 25yrs)
25yrs

M
t

− ×
∆ = +

&

&

  
(5)

if 
1966

t
o dM (M   25yrs) 0− × >&  where the next earthquake is predicted to occur in 1966+∆t.  

1966oM

is the coseismic moment, t
dM&  is the moment deficit rate inferred from trilateration data, and G

dM&

is that inferred from GPS data.

a b

c d



9

Figure 3: Distributions estimated from the constrained inversion and bootstrap procedure. a) coseismic Mo, b)
interseismic moment deficit rate found from trilateration data, c) interseismic moment deficit rate found from GPS
data, and d) interevent time.  The interevent time was found by sampling from the distributions shown in a – c as
discussed in the text.  The 95% confidence intervals are indicated by the solid vertical lines; the Mo, moment deficit
rate, and interevent time using the original (not resampled) data sets, a deep slip-rate of 33 mm/yr, and a transition
depth of 14 km are shown by  the dotted lines.   The calendar years corresponding to each interevent time (∆t) are
also shown.

The resulting bounds on interevent time range from 7 to 21 years at 95% confidence.  In
other words, the strain released in 1966 recovered sometime between 1973 and 1987.  The
expected earthquake has yet to occur, demonstrating that the time predictable model has failed at
Parkfield.

Implications

There are several possible reasons for the inability of the time-predictable model to
forecast the Parkfield earthquake.  A central premise of the model is that an earthquake occurs
when the fault reaches a critical stress.  However, modern theories of fault failure postulate that
earthquake nucleation depends on the elastic loading system and the frictional properties of the
fault rather than a characteristic failure stress.  Therefore, variations in pore fluid pressure or
stress perturbations may affect the time to the next earthquake [Dieterich, 1994].  For example,
Toda and Stein [2002] suggest that the 1983 Coalinga event (fig. 1a) could have delayed the next
Parkfield earthquake into the mid 1990’s, however they could not explain the length of delay that
has been observed.  The M ~ 4.7 Parkfield events in the early 1990s (fig. 1b, [Fletcher and
Spudich, 1998]) likely increased the static stress in the expected nucleation zone, increasing the
probability of a repeat of the 1966 event.  Another questionable assumption of the model is that
stress accumulates at a constant rate between earthquakes.  Slight changes in the interseismic
slip-rate could lead to significant changes in stressing-rate in the expected nucleation zone.



10

An alternative description of the earthquake cycle also proposed by Shimazaki and
Nakata [1980] is termed the slip-predictable model.  This model states that an earthquake can
occur at any time (there is no thresh-hold stress), but it's not necessarily predicted to be the same
size.  Instead, the slip in the next earthquake equals the accumulated slip deficit.  This model
shares many assumptions with the time-predictable model (for example, representing
earthquakes by only moment and time), but cannot be tested at Parkfield until another earthquake
occurs on the 1966 rupture plane.  As shown in figure 4, if such an event were to happen today,
based on the slip-predictable model and using our estimates of interseismic moment deficit rate,
the earthquake would be expected to be of Mw 6.6 – 6.9, considerably larger than previous
Parkfield earthquakes.

Figure 4: Expected moment magnitude (Mw)
as a function of time for an earthquake on
the 1966 Parkfield earthquake rupture plane
according to the slip-predictable model.
Blue and green lines are curved because
moment (Mo) has been converted to Mw
according to Mw = (log Mo + 7) / 1.5 – 10.7
with Mo in N m.

This raises the question of whether another earthquake like that of 1966 can be expected
at all.  Based on the past history of M 6 earthquakes at Parkfield, it is reasonable to believe that
such an event will happen again.  The neighboring creeping section of the San Andreas makes it
unlikely that an M 6 earthquake will slip much farther to the NW than the inferred epicenters for
previous Parkfield earthquakes.  An interesting question is whether a "Parkfield" earthquake can
nucleate farther to the SE (e.g. at Carr Hill).  There have been suggestions that a future
earthquake nucleating on the Parkfield segment might rupture the fault SE of the 1966 rupture
plane because this part of the fault has a slip deficit comparable to geologically determined slip
in the Mw 7.8 1857 Fort Tejon earthquake [Harris and Archuleta, 1988].  Although such an
argument appears to be another invocation of the time predictable model, the inability of this
model to predict earthquake occurrence does not preclude a potential role for slip deficit in
promoting the propagation of slip that has already initiated.   Moreover, static stress changes due
to an earthquake on the Parkfield segment could trigger slip to the southeast.  Evidence exists for
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the triggering or propagation of slip to the southeast of Parkfield during the 1857 Fort Tejon
earthquake [Sieh, 1978].

We conclude that the reaccumulation of the strain released in the last earthquake is a
necessary but not a sufficient condition for another event to occur.  The time-predictable model
is too simple to accurately characterize the conditions necessary for moderate to large
earthquakes, although it appears to fare better in describing recurrence in some clusters of
microseismicity.  The time-predictable model is used in earthquake probability calculations.
Because multiple models for earthquake recurrence are employed in such assessments and
uncertainty is assigned to each, we do not believe that our findings negate the existing hazard
forecasts.  However, our findings could conceivably lead to reassessment of the uncertainty
attributed to the time-predictable model.

PROJECT 2: TIME-DEPENDENT DEFORMATION

The second aspect of the earthquake cycle that we proposed to investigate is transient
deformation.  Several studies [e.g., Gao et al., 2000 and references therein] have noted a possible
transient event at Parkfield characterized by an increase in microseismicity, the occurrence of
four 4 < M < 5 earthquakes in the Middle Mountain area, and anomalous signals on the two-
color laser and borehole tensor strainmeter (BTSM) networks in the early 1990s.  We have used
a nonparametric Kalman filtering-based method called the Network Inversion Filter (NIF)
[Segall and Matthews, 1997; McGuire and Segall., in press] to model the Parkfield two-color
laser data.  This study consisted of two stages. The first was further development of the filtering
algorithm, including use of synthetic tests to assess the range (in magnitude and duration) of
signals that may be accurately modeled given realistic measurement noise and station
distribution.  The second was application of the NIF to study the apparent Parkfield transient.
Details of this project will be presented in the reports for our FY2003 continuation grant.
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DATA AVAILABILITY

The trilateration and GPS data may be obtained in ASCII format from the USGS at:
http://quake.wr.usgs.gov/research/deformation/gps/index.html.  The sinex files used in this study
may be obtained from Jessica Murray (jrmurray@pangea.stanford.edu; 650-723-5485).

REFERENCES

Annaka, T. & H. Yashiro, A seismic source model with temporal dependence of large earthquake
occurrence for probabilistic seismic hazard analysis in Japan, in Risk Analysis, Rubio, J.L., Brebbia,
C. A., & Uso, J-L., eds., WIT Press, Boston, 1998.

Bakun, W. H. and T. V. McEvilly, Recurrence models and Parkfield, California, earthquakes, J. Geophys.
Res., 89, 3051-3058, 1984.

Cramer, C. H., M. D. Petersen, C. Tianqing, T. R. Toppozada, and M. Reichle, A time-dependent
probabilistic seismic-hazard model for California. Bull. Seismo. Soc. Am., 90, 1-21, 2000.

Dieterich, J., A constitutive law for rate of earthquake production and its application to earthquake
clustering, J. Geophys. Res., 99, 2601-2618, 1994.

Eaton, J. P., M. E. O’Neill, and J. N. Murdock, Aftershocks of the 1966 Parkfield-Cholame, California,
earthquake: A detailed study, Bull. Seismol. Soc. Am., 60, 1151-1197, 1970.

Efron, B. and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, San Francisco, 1993.
Fletcher, J. B. and P. Spudich, Rupture characteristics of the three M ~ 4.7 (1992 – 1994) Parkfield

earthquakes, J. Geophys. Res., 103, 835-854, 1998.
Gao, S., P. G. Silver, and A. T. Linde, Analysis of deformation data at Parkfield, California: Detection of

a long-term strain transient, J. Geophys. Res., 105, 2955-2967, 2000.
Harris, R. and R. Archuleta, Slip budget and potential for a M7 earthquake in Central California,

Geophys. Res. Lett., 15, 1215-1218, 1988.
Harris, R. A. and P. Segall, Detection of a locked zone at depth on the Parkfield, California, segment of

the San Andreas fault, J. Geophys. Res., 92, 7945-7962, 1987.
Johnson, H. O., D. C. Agnew, and K. Hudnut, Extremal bounds on earthquake movement from geodetic

data: Application to the Landers earthquake, Bull. Seismo. Soc. Am., 84, 660-667, 1994.
King, N. E., P. Segall, and W. Prescott, Geodetic measurements near Parkfield, California, 1959-1984, J.

Geophys. Res., 92, 2747-2766, 1987.
McGuire, J. and P. Segall, Imaging of aseismic fault slip transients recorded by dense geodetic networks,

Geophys. J. Int., in press.
Murray, J., P. Segall, P. Cervelli, W. Prescott, J. Svarc, Inversion of GPS data for spatially variable slip-

rate on the San Andreas fault near Parkfield, CA, Geophys. Res. Lett., 28, 359-362, 2001.
Reid, H. F., The mechanics of the earthquake, in The California earthquake of April 18, 1906, Report of

the state earthquake investigation commission, vol. 2, Carnegie Institute, Washington D.C., 1910.
Segall, P. and Y. Du, How similar were the 1934 and 1966 Parkfield earthquakes?, J. Geophys. Res., 98,

4527-4538, 1993.
Segall, P. and R. Harris, Earthquake deformation cycle on the San Andreas fault near Parkfield,

California, J. Geophys. Res., 92, 10,511-10,525, 1987.
Segall, P. and M. Matthews, Time dependent inversion of geodetic data, J. Geophys. Res., 102, 22,391-

22,409, 1997.
Sieh, K. E., Central California foreshocks of the great 1857 earthquake, Bull. Seismo. Soc. Am., 68, 1731-

1749, 1978.
Sieh, K. E. and R. H. Jahns, Holocene activity of the San Andreas fault at Wallace Creek, California,

Geo. Soc. Am. Bull., 95, 883-896, 1984.
Shimazaki, K. and T. Nakata, Time-predictable recurrence model for large earthquakes, Geophys. Res.

Lett., 7, 279-282, 1980.



13

Stirling, M. W., A new probabilistic seismic hazard model for New Zealand. Proceedings of the 12th

World Conference on Earthquake Engineering, New Zealand Society for Earthquake Engineering,
2000.

Toda, S. and R. Stein, Response of the San Andreas fault to the 1983 Coalinga-Nunez earthquakes: An
application of interaction-based probabilities for Parkfield, J. Geophys. Res., 107, 10.1029/2001
JB000172, 2002.

Wahba, G., Spline Models for Observational Data, Society for Industrial and Applied Mathematics,
Philadelphia, Pa., 1990.

Working Group on California Earthquake Probabilities, Seismic Hazards in Southern California: Probable
Earthquakes, 1994 to 2024, Bull. Seismo. Soc. Am., 85, 379-439, 1995.

Working Group on California Earthquake Probabilities, Earthquake probabilities in the San Francisco
Bay Region: 2000 to 2030 – A summary of findings, U.S. Geol. Surv. open-file report 99-517, 1999.


